MesoBioTech supports design, prototyping and manufacturing of microfluidic and stem cell devices. It can also serve as partner for your project application at national and international levels in fields of nanofabrication, microfluidics and stem cell devices.  

Read publications from our scientists and customors
 Check protocols and download brochures
Speed up your research works with our integrative solutions


  1. Chen, Y. et al (1994) 50-nm x-ray-lithography using synchrotron-radiation, J.Vac. Sci. Techno. B12, 3959-3964.
  2. Tredicucci, A. et al (1995) Controlled exciton-photon interaction in semiconductor bulk microcavities, Physical Review Letters 75, 3906-3909.
  3. Chappert, C. et al (1998) Planar patterned magnetic media obtained by ion irradiation, Science 280, 1919-1922.
  4. Li, S., et al (2001) Flux closure structures in cobalt rings, Physical Review Letters 86, 1102-1105.
  5. Chen, Y. et al (2001) Nanofabrication: Conventional and nonconventional methods, Electrophoresis 22, 187-207.
  6. Greffet, J. et al (2002) Coherent emission of light by thermal sources, Nature 416, 61-64.
  7. Li, S. et al (2002) Magnetic domain confinement by anisotropy modulation, Physical Review Letters 88, 087202.
  8. Li, S. et al (2002) Microstructures – Spin-engineering magnetic media, Nature 415, 600-601.
  9. Natali, M. et al (2002) Correlated magnetic vortex chains in mesoscopic cobalt dot arrays, Physical Review Letters 88, 157203.
  10. Studer, V. et al (2004) An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control, Analyst 129, 944-949.
  11. Thery, M. et al (2005) The extracellular matrix guides the orientation of the cell division axis, Nature Cell Biology 7, 947-U929.
  12. Sun, M. et al (2005) Artificial lotus leaf by nanocasting, Langmuir 21, 8978-8981.
  13. Galas, J. et al (2005) Microfluidic tunable dye laser with integrated mixer and ring resonator, Applied Physics Letters 86.
  14. Thery, M et al (2006) Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity, Proc. Natl. Acad. Sci. USA 103, 19771-19776.
  15. De Wilde et al (2006) Thermal radiation scanning tunnelling microscopy, Nature 444, 740-743.
  16. Crozatier, C. et al (2006) Multi-colour micro-contact printing based on microfluidic network inking, Microelectron. Eng. 83, 910-913.
  17. Amatore, C. et al(2006)Coupling of electrochemistry and fluorescence microscopy at indium tin oxide microelectrodes for the analysis of single exocytotic events, AngewChemInt. Ed. 45, 4000-4003.
  18. Xu, L. et al (2007) Microcontact printing of living bacteria arrays with cellular resolution, Nano Letters 7, 2068-2072.
  19. Shi, J. et al (2009) Microcontact Printing and Lithographic Patterning of Electrospun Nanofibers, Langmuir 25, 6015-6018.
  20. Diguet, al (2009) Photomanipulation of a Droplet by the Chromocapillary Effect, AngewChemInt. Ed. 48, 9281-9284.
  21. Wang, L. et al (2011) Patterning cells and shear flow conditions: Convenient observation of endothelial cell remoulding enhanced production of angiogenesis factors and drug response, Lab on a Chip 11, 4235-4240.
  22. Li, X. et al (2011) Integrated and diffusion-based micro-injectors for open access cell assays, Lab on a Chip 11, 2612-2617.
  23. Hu, J. et al (2011) Cell culture on AAO nanoporous substrates with and without geometry constrains, Microelctron. Eng. 88, 1714-1717.
  24. Diring, S. et al (2013) Localized cell stimulation by nitric oxide using a photoactive porous coordination polymer platform, Nature Com. 4, 2684.
  25. Le Berre, M. et al (2013) Geometric Friction Directs Cell Migration, Physical Review Letters 111, 198101.
  26. Tang, Y. et al (2014) Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells, Scientific Reports 4, 6052.
  27. Liu, L. et al (2014) Nanofibrous gelatin substrates for long-term expansion of human pluripotent stem cells, Biomaterials 35, 6259-6267.
  28. Tang, Y. et al (2016) Induction and differentiation of human induced pluripotent stem cells into functional cardiomyocytes on a compartmented monolayer of gelatin nanofibers, Nanoscale 8, 14530-14540.
  29. Brasiliense, V. et al(2016) Correlated Electrochemical and Optical Detection Reveals the Chemical Reactivity of Individual Silver Nanoparticles, J. Am. Chem. Soc138, 3478-3483
  30. Tang, Y. et al (2016) Effective motor neuron differentiation of hiPSCs on a patch made of crosslinked monolayer gelatin nanofibers, J Mat. Chem B4, 3305-3312.
  31. Plamont, M.-A. et al (2016) Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo, Proc. Natl. Acad. Sci.(USA) 113, 497-502.
  32. Joanne, P. et al (2016) Nanofibrous clinical-grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy, Biomaterials 80, 157-168.
  33. Houssin, T. et al (2016) Ultrafast, sensitive and large-volume on-chip real-time PCR for the molecular diagnosis of bacterial and viral infections, Lab on a Chip 16, 1401-1411.
  34. Tang, Y. D. et al (2017) Patch method for culture of primary hippocampal neurons, Microelectron. Engin. 175, 61-66.
  35. Liu, L. et al, (2017) Nano-on-micro fibrous extracellular matrices for scalable expansion of human ES/iPS cells, Biomaterials 124, 47-54.
  36. Li, J. et al (2017) Human Pluripotent Stem Cell-Derived Cardiac Tissue-like Constructs for Repairing the Infarcted Myocardium, Stem Cell Reports 9, 1546-1559.
  37. Chen Y, et al (2015) Cell culture devices, EP 15 175 960.2
  38. Cayre Y and Chen Y. (2013), Filtre biocompatible et procédé de fabrication d’un filtre biocompatible, FR13 61040


  1.  Cell culture patch instructions
  2.  Integration chips  and clamp instructions
  3.  Cardiac differentiation from iPS cells
  4.  Neuron differentiation from iPS cells


  1. General microfluidics.
  2. Stem cell devices
  3. Advanced culture system
  4. Bioproduction system